nLab D=4 Yang-Mills theory

Contents

Context

Quantum Field Theory

algebraic quantum field theory (perturbative, on curved spacetimes, homotopical)

Introduction

Concepts

field theory:

Lagrangian field theory

quantization

quantum mechanical system, quantum probability

free field quantization

gauge theories

interacting field quantization

renormalization

Theorems

States and observables

Operator algebra

Local QFT

Perturbative QFT

Differential cohomology

Contents

Idea

D=4 Yang-Mills theory (D=4 YM theory) studies the Yang-Mills equations over a base manifold of dimension D=4D=4. This special case allows to reduce the Yang-Mills equations of second order to the (anti) self-dual Yang-Mills equations ((A)SDYM equations) of first order.

Basics

Consider

  • GG a Lie group,

  • BB an orientable Riemannian 4-manifold,

  • EBE\twoheadrightarrow B a principal G G -bundle,

  • AΩ Ad 1(E,𝔤)Ω 1(B,Ad(E))A\in\Omega_{\operatorname{Ad}}^1(E,\mathfrak{g})\cong\Omega^1(B,\operatorname{Ad}(E)) a principal connection,

  • F Ad AA=dA+[AA]Ω Ad 2(E,𝔤)Ω 2(B,Ad(E))F_A \coloneqq \mathrm{d}_A A=\mathrm{d}A+[A\wedge A]\in\Omega_{\operatorname{Ad}}^2(E,\mathfrak{g})\cong\Omega^2(B,\operatorname{Ad}(E)) its curvature.

Chern-Weil theory implies that the second Chern class of the gauge bundle is:

(1)c 2(E),[B]=c 2(Ad(E)),[B]=18π 2 Btr(F AF A). \big\langle c_2(E),[B] \big\rangle = \Big\langle c_2\big(\operatorname{Ad}(E)\big), [B] \Big\rangle = -\frac{1}{8\pi^2} \int_B \operatorname{tr}(F_A \wedge F_A) \;\in\; \mathbb{Z} \,.

Application on the 4-sphere

The quaternionic Hopf fibration is a principal SU ( 2 ) SU(2) -bundle over S 4S^4, which encodes the charge quantization of the magnetic charge of a magnetic monopole in five dimensions (Wu-Yang monopole) using:

Prin Sp(1)(S 4)[S 4,BSp(1)]=π 4BSp(1)π 3Sp(1)π 3S 3. \operatorname{Prin}_{\operatorname{Sp}(1)}(S^4) \;\cong\; \big[S^4,\operatorname{BSp}(1)\big] \;=\; \pi_4\operatorname{BSp}(1) \;\cong\; \pi_3\operatorname{Sp}(1) \;\cong\; \pi_3S^3 \;\cong\; \mathbb{Z} \,.

Given an mm\in\mathbb{Z}, the corresponding principal bundle is given by pullback of the universal principal bundle ESp(1)BSp(1)ESp(1)\twoheadrightarrow BSp(1) along the composition of the canonical inclusion S 4P 1P BSp(1)S^4\cong\mathbb{H}P^1\hookrightarrow\mathbb{H}P^\infty\cong BSp(1) and the map BSp(1)BSp(1)BSp(1)\rightarrow BSp(1) induced by Sp(1)Sp(1),qq mSp(1)\rightarrow Sp(1),q\mapsto q^m.

Last revised on June 28, 2024 at 14:20:59. See the history of this page for a list of all contributions to it.